Abstract

BackgroundTolerogenic dendritic cells (tDCs) play important roles in immune tolerance, autoimmune disease, tissue transplantation, and the tumor micro-environment. Factors that induce tDCs have been reported, however the intracellular mechanisms involved are rarely discussed. MethodsCirculating CD14+CD16+ of breast cancer patients and induced CD14+CD16+ DCs were identified as tDCs by treating CD14+ monocytes with galectin-1 and cancer cell-derived medium combined with IL-4 and GM-CSF. In addition, the 4T1 breast cancer syngeneic xenograft model was used to investigate the effect of galectin-1 in vivo. ResultsThe CD14+CD16+ tDC population in the breast cancer patients was comparatively higher than that in the healthy donors, and both the MDA-MB-231 conditioned medium and galectin-1 could induce tDC differentiation. In a BALB/c animal model, the 4T1 breast cancer cell line enhanced IL-10 expression in CD11c+ DCs which was down-regulated after knocking down the galectin-1 expression of 4T1 cells. Analysis of galectin-1 interacting proteins showed that myosin IIa was a major target of galectin-1 after internalization through a caveolin-dependent endocytosis. Myosin IIa specific inhibitor could diminish the effects of galectin-1 on monocyte-derived tDCs and also block the 4T1 cell induced CD11c+/Ly6G+/IL-10+ in the BALB/c mice. ConclusionsGalectin-1 can induce tDCs after internalizing into CD14+ monocytes through the caveolae-dependent pathway and activating myosin IIa. For the breast cancer patients with a high galectin-1 expression, blebbistatin and genistein show potential in immune modulation and cancer immunotherapy. General significanceMyosin IIa activation and galectin-1 endocytosis are important in tumor associated tDC development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.