Abstract

ABSTRACT Piezo channels transduce mechanical stimuli into electrical and chemical signals, and in doing so, powerfully influence development, tissue homeostasis, and regeneration. While much is known about how Piezo1 responds to external forces, its response to internal, cell-generated forces remains poorly understood. Here, using measurements of endogenous Piezo1 activity and traction forces in native cellular conditions, we show that actomyosin-based cellular traction forces generate spatially-restricted Ca2+ flickers in the absence of externally-applied mechanical forces. Although Piezo1 channels diffuse readily in the plasma membrane and are widely distributed across the cell, their flicker activity is enriched in regions proximal to force-producing adhesions. The mechanical force that activates Piezo1 arises from Myosin II phosphorylation by Myosin Light Chain Kinase. We propose that Piezo1 Ca2+ flickers allow spatial segregation of mechanotransduction events, and that diffusion allows channel molecules to efficiently respond to transient, local mechanical stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call