Abstract

The Drosophila tracheal system consists of an interconnected network of monolayered epithelial tubes that ensures oxygen transport in the larval and adult body. During tracheal dorsal branch (DB) development, individual DBs elongate as a cluster of cells, led by tip cells at the front and trailing cells in the rear. Branch elongation is accompanied by extensive cell intercalation and cell lengthening of the trailing stalk cells. Although cell intercalation is governed by Myosin II (MyoII)-dependent forces during tissue elongation in the Drosophila embryo that lead to germ-band extension, it remained unclear whether MyoII plays a similar active role during tracheal branch elongation and intercalation. Here, we have used a nanobody-based approach to selectively knock down MyoII in tracheal cells. Our data show that, despite the depletion of MyoII function, tip cell migration and stalk cell intercalation (SCI) proceed at a normal rate. This confirms a model in which DB elongation and SCI in the trachea occur as a consequence of tip cell migration, which produces the necessary forces for the branching process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.