Abstract

Both cellular motility and intracellular particle movement are compared between normal Dictyostelium amebae of strain AX4 and amebae of a myosin II heavy chain null mutant, HS2215, using the computer assisted "Dynamic Morphology System." In AX4 cells rapidly translocating in buffer, cytoplasmic expansion is apical and the majority of intracellular particles move anteriorly, towards the site of expansion. When these cells are pulsed with 10(-6) M cAMP, the peak concentration of the natural cAMP wave, cells stop translocating and average particle velocity decreases threefold within 2-4 s after cAMP addition. After 8 s, there is a partial rebound both in cytoplasmic expansion and particle velocity, but in both cases, original apical polarity is lost. In HS2215 cells in buffer, both cellular translocation and average particle velocity are already at the depressed levels observed in normal cells immediately after cAMP addition, and no anterior bias is observed in either the direction of cytoplasmic expansion or the direction of particle movement. The addition of cAMP to myosin-minus cells results in no additional effect. The results demonstrate that myosin II is necessary for (a) the rapid rate of intracellular particle movement, (b) the biased anterior directionality of particle movement, and (c) the rapid inhibition of particle movement by cAMP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.