Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) is a key signaling molecule in chemotaxis, a directed cell migration toward chemoattractants. PtdIns(3,4,5)P3 is transiently generated by chemotactic stimulation and activates reorganization of the actin cytoskeleton at the leading edge of migrating cells. In a recent study, we demonstrated that PtdIns(3,4,5)P3 directly binds to three members of the actin-based motor protein myosin I (myosin ID, IE and IF) in Dictyostelium discoideum and recruits these proteins to the plasma membrane of the leading edge. The PtdIns(3,4,5)P3-regulated membrane recruitment of myosin I induced chemoattractant-stimulated actin polymerization and was therefore required for chemotaxis. Similarly, human myosin IF was translocated to the plasma membrane through interactions with PtdIns(3,4,5)P3 upon chemotactic stimulation in a neutrophil cell line. Interestingly, we also found that the three PtdIns(3,4,5)P3-binding myosin I proteins function in phagocytosis, which involves both PtdIns(3,4,5)P3 signaling and actin cytoskeleton remodeling. Our findings provide an evolutionarily conserved mechanism by which class I myosin transmits PtdIns(3,4,5)P3 signals to the actin cytoskeleton.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.