Abstract

The atrioventricular junction of the fish heart, namely the segment interposed between the single atrium and the single ventricle, has been studied anatomically and histologically in several chondrichthyan and teleost species. Nonetheless, knowledge about myosin heavy chain (MyHC) in the atrioventricular myocardium remains scarce. The present report is the first one to provide data on the MyHC isoform distribution in the myocardium of the atrioventricular junction in chondrichthyans, specifically in the lesser spotted dogfish, Scyliorhinus canicula, a shark species whose heart reflects the primitive cardiac anatomical design in gnathostomes. Hearts from five dogfish were examined using histochemical and immunohistochemical techniques. The anti-MyHC A4.1025 antibody was used to detect differences in the occurrence of MyHC isoforms in the dogfish, as the fast-twitch isoforms MYH2 and MYH6 have a higher affinity for this antibody than the slow-twitch isoforms MYH7 and MYH7B. The histochemical findings show that myocardium of the atrioventricular junction connects the trabeculated myocardium of the atrium with the trabeculated layer of the ventricular myocardium. The immunohistochemical results indicate that the distribution of MyHC isoforms in the atrioventricular junction is not homogeneous. The atrial portion of the atrioventricular myocardium shows a positive reactivity against the A4.1025 antibody similar to that of the atrial myocardium. In contrast, the ventricular portion of the atrioventricular junction is not labelled, as is the case with the ventricular myocardium. This dual condition suggests that the myocardium of the atrioventricular junction has two contraction patterns: the myocardium of the atrial portion contracts in line with the atrial myocardium, whereas that of the ventricular portion follows the contraction pattern of the ventricular myocardium. Thus, the transition of the contraction wave from the atrium to the ventricle may be established in the atrioventricular segment because of its heterogeneous MyHC isoform distribution. The findings support the hypothesis that a distinct MyHC isoform distribution in the atrioventricular myocardium enables a synchronous contraction of inflow and outflow cardiac segments in vertebrates lacking a specialized cardiac conduction system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call