Abstract

This investigation estimated the amount of variance in voluntary in vivo muscle performance that can be explained by relative myosin heavy chain (MHC) isoform expression. The role of the relative expression of these proteins in relation to in vitro force and velocity performance is well understood, but the in vivo model is less clear. Twenty-two men and women (mean +/- SD age, 27 +/- 6 years) performed isometric knee extensor actions in which peak force and rate of force development (RFD) were measured. The results of regression analysis showed that the inclusion of MHC IIb explained a significant (19.9%, p < 0.05) amount of variance in relative peak force (adjusted for muscle mass) and 14.1% of the variance in the first half of the rise phase of the force-time curve (RFD(0-50%)) (p < 0.1). The addition of MHC I into this model explained a significant (p < 0.05) amount of variance above that accounted for by MHC IIb in RFD (45.4%), RFD(0-50%) (50.8%), and RFD(50-100%) (second half of the rise phase of the force-time curve) (37.4%). Since the percentage of MHC IIb is reduced rather quickly with training, these data suggest that peak force may also be affected quickly by training. The percentage of MHC I has a longer course for change with training; therefore, it may be inferred that the greatest changes in RFD variables will likely occur during a longer course.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.