Abstract

Catch force in molluscan smooth muscle requires little, if any, energy input and is controlled by the phosphorylation state of the thick filament-associated mini-titin, twitchin. The kinetic parameters of myosin cross-bridge turnover in permeabilized catch muscle, and how they are potentially modified by the catch mechanism, were determined by single turnover measurements on myosin-bound ADP. Under isometric conditions, there are fast and slow components of cross-bridge turnover that probably result from kinetic separation of calcium-bound and calcium-free cross-bridge pools. The structure responsible for catch force maintenance at intermediate [Ca+2] does not alter the processes responsible for the fast and slow components under isometric conditions. Also, there is no measurable turnover of myosin-bound ADP during relaxation of catch force by phosphorylation of twitchin at pCa>8. The only effects of the catch link on myosin-bound ADP turnover are 1), a small, very slow extra turnover when catch force is maintained at very low [Ca+2] (pCa>8); and 2), attenuation of the shortening-induced increase in turnover at subsaturating [Ca+2]. These limited interactions between the catch link and myosin cross-bridge turnover are consistent with the idea that catch force is maintained by a thick and thin filament linkage other than the myosin cross-bridge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.