Abstract
Myorod, a new protein of molluscan smooth muscles, is localized on the surface of paramyosin core of thick filaments together with myosin [Shelud'ko et al. (1999) Comp Biochem Physiol, 122, 277]. This protein is an alternatively spliced product of the myosin heavy chain gene. It contains the C-terminal rod part of myosin and a unique N-terminal domain [Yamada et al. (2000) J Mol Biol, 295, 169]. In the present study, the methods of myorod and myorod-free myosin preparation are developed and some properties of myorod are compared with those of myosin and myosin rod. We found that, in spite of the identity of filament-forming domains, the properties of polymeric myorod are clearly distinct from those of myosin and myosin rod. Myorod is much more soluble at intermediate ionic strength. The critical monomer concentration for polymerization of myorod is many times higher. The size of polymer particles of myorod is considerably smaller than that of myosin and myosin rod. The pure polymeric myorod forms a low turbid and unexpectedly high viscous suspension. The low-shear intrinsic viscosity of myorod is an order of magnitude higher than that of myosin or myosin rod and is close to that of F-actin. A trace admixture of myosin in myorod preparations or a small addition of myosin (0.2-1.0%) to myorod drastically alters the myorod polymerization. The suspensions of polymeric myorod nucleated by myosin have a high turbidity and low viscosity and consist of large particles. As judged from the changes in particle size distribution during polymerization, these particles are formed by successive dimerization steps. Electron micrographs show that the particles are typically spindle-shaped filaments in contrast to polymers of pure myorod which forms a network-like structure consisting of small particles. Possible participation of myorod in the catch-contraction of molluscan smooth muscles is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.