Abstract

Myo-inositol is a major intracellular osmolyte that can be accumulated to protect cells from a variety of stresses, including fluctuations in the osmolality of the environment, and cortisol is thought to be an osmotic hormone in teleost fish. In this study, dietary myo-inositol resulted in increased Na+-K+-ATPase activity and gene expression of partial ion channel genes and prolonged survival time of turbot (Scophthalmus maximus) under low salinity. The cortisol regulated by dietary myo-inositol also was correlated with these outcomes. The optimal concentrations of cortisol stimulated gill Na+-K+-ATPase activity and increased the expression of ion channel genes to enhance low salinity tolerance, as indicated by longer survival time under low salinity. When cortisol level was suppressed, myo-inositol failed to increase the survival time of turbot under low salinity, and strong correlations between cortisol concentration and Na+-K+-ATPase activity, expression of partial ion channel genes, and survival time of turbot were detected. These results showed that myo-inositol enhanced the low salinity tolerance of turbot by modulating cortisol synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.