Abstract

AbstractFunctionalized indoles are recurrent motifs in bioactive natural products and pharmaceuticals. While transition metal‐catalyzed carbene transfer has provided an attractive route to afford C3‐functionalized indoles, these protocols are viable only in the presence of N‐protected indoles, owing to competition from the more facile N−H insertion reaction. Herein, a biocatalytic strategy for enabling the direct C−H functionalization of unprotected indoles is reported. Engineered variants of myoglobin provide efficient biocatalysts for this reaction, which has no precedents in the biological world, enabling the transformation of a broad range of indoles in the presence of ethyl α‐diazoacetate to give the corresponding C3‐functionalized derivatives in high conversion yields and excellent chemoselectivity. This strategy could be exploited to develop a concise chemoenzymatic route to afford the nonsteroidal anti‐inflammatory drug indomethacin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.