Abstract

The hypothesis, based on in vitro experiments on large conduit arteries, that endothelium-derived nitric oxide is a mediator of vascular myogenic reactivity was tested in cat gastrocnemius muscle in vivo. This was done by comparing, in the absence and presence of effective endothelium-derived nitric oxide blockade by the specific inhibitors NG-monomethyl-L-arginine or NG-nitro-L-arginine methyl ester, myogenic responses in defined consecutive vascular sections to dynamic vascular transmural pressure stimuli, to arterial occlusion (reactive hyperaemia), and to arterial pressure changes (autoregulation of blood flow and capillary pressure). The results demonstrated that the myogenic vascular reactivity to quick ramp transmural pressure stimuli was not attenuated by endothelium-derived nitric oxide blockade, but rather reinforced. The amplitude of the reactive hyperaemia response was unaffected by endothelium-derived nitric oxide blockade, but its duration was shortened because of faster myogenic constriction, especially of large-bore arterial resistance vessels greater than 25 microns, in the recovery phase. Both the improved myogenic responsiveness to transmural pressure stimuli and the shortening of the reactive hyperaemia by endothelium-derived nitric oxide blockade suggested that endothelium-derived nitric oxide released in vivo acts as a 'metabolic' factor which certainly does not improve, but rather depresses myogenic vascular reactivity. Autoregulation of blood flow and capillary pressure were well preserved in the presence of endothelium-derived nitric oxide blockade. It was concluded from the results of these multifaceted tests that myogenic vascular regulation in skeletal muscle in vivo seems independent of endothelium-derived nitric oxide.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.