Abstract

The fusion index is a key indicator for quantifying the differentiation of a myoblast population, which is often calculated manually. In addition to being time-consuming, manual quantification is also error prone and subjective. Several software tools have been proposed for addressing these limitations but suffer from various drawbacks, including unintuitive interfaces and limited performance. In this study, we describe MyoFInDer, a Python-based program for the automated computation of the fusion index of skeletal muscle. At the core of MyoFInDer is a powerful artificial intelligence-based image segmentation model. MyoFInDer also determines the total nuclei count and the percentage of stained area and allows for manual verification and correction. MyoFInDer can reliably determine the fusion index, with a high correlation to manual counting. Compared with other tools, MyoFInDer stands out as it minimizes the interoperator variability, minimizes process time and displays the best correlation to manual counting. Therefore, it is a suitable choice for calculating fusion index in an automated way, and gives researchers access to the high performance and flexibility of a modern artificial intelligence model. As a free and open-source project, MyoFInDer can be modified or extended to meet specific needs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.