Abstract
Abstract Objectives Branched-chain amino acids (BCAAs) are essential amino acids that are crucial for skeletal muscle anabolism. Thus, alterations in their levels are associated with muscle atrophic diseases such as cancer, chronic inflammatory and neurological disorders. Others have linked impairments in BCAA metabolism to the development of insulin resistance and its sequelae. Compared to the effects of theses amino acids, much less is known on how impairment in BCAA catabolism affects skeletal muscle. BCAA catabolism starts with the reversible transamination by the mitochondrial enzyme branched-chain aminotransferase 2 (BCAT2). This is followed by the irreversible carboxylation, catalyzed by branched-chain ketoacid dehydrogenase (BCKD) complex. We have shown that BCAT2 and BCKD are essential for the differentiation of skeletal myoblasts into myotubes. Here, we investigated the effect of depletion of BCAT2 or of E1a subunit of BCKD in differentiated myotubes. Methods On day 4 of differentiation, L6 myotubes were transfected with the following siRNA oligonucleotides: scrambled (control), BCAT2, or E1a subunit of BCKD. Results Forty-eight hours after transfection, compared to control or BCAT2 siRNA group, we observed improved myotube structure in BCKD-depleted cells. BCKD depletion augmented myofibrillar protein levels: myosin heavy chain (MHC, 2-fold) and tropomyosin (4-fold), P < 0.05, n = 3. To further analyze the increase in myofibrillar protein content, we examined signaling through mTORC1 (mechanistic target of rapamycin complex 1), a vital complex necessary for skeletal muscle anabolism. BCKD depletion increased the phosphorylation of mTORC1 upstream activator AKT (52%, P < 0.05, n = 3), and of mTORC1 downstream substrates by 25%-86%, consistent with the increase in myofibrillar proteins. Finally, in myotubes treated with the catabolic cytokine (tumor necrosis factor-a), BCKD depletion tended to increase the abundance of tropomyosin (a myofibrillar protein). Conclusions We showed that depletion of BCKD enhanced myofibrillar protein content and anabolic signaling. If these data are confirmed in vivo, development of dietary and other interventions that target BCKD abundance or functions may promote muscle protein anabolism in individuals with muscle wasting conditions. Funding Sources MHRC, NSERC York U.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.