Abstract

N-RAP is a striated muscle-specific scaffolding protein that organizes α-actinin and actin into symmetrical I-Z-I structures in developing myofibrils. Here we determined the order of events during myofibril assembly through time-lapse confocal microscopy of cultured embryonic chick cardiomyocytes coexpressing fluorescently tagged N-RAP and either α-actinin or actin. During de novo myofibril assembly, N-RAP assembled in fibrillar structures within the cell, with dots of α-actinin subsequently organizing along these structures. The initial fibrillar structures were reminiscent of actin fibrils, and coassembly of N-RAP and actin into newly formed fibrils supported this. The α-actinin dots subsequently broadened to Z-lines that were wider than the underlying N-RAP fibril, and N-RAP fluorescence intensity decreased. FRAP experiments showed that most of the α-actinin dynamically exchanged during all stages of myofibril assembly. In contrast, less than 20% of the N-RAP in premyofibrils was exchanged during 10–20 min after photobleaching, but this value increased to 70% during myofibril maturation. The results show that N-RAP assembles into an actin containing scaffold before α-actinin recruitment; that the N-RAP scaffold is much more stable than the assembling structural components; that N-RAP dynamics increase as assembly progresses; and that N-RAP leaves the structure after assembly is complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.