Abstract

To investigate the role of vascular gap junctions and potassium channels in the renal endothelial derived hyperpolarization. In interlobar arteries from wild-type and connexin40 knockout mice, we assessed the role of calcium-activated small (SK) and intermediate (IK) conductance potassium channels. The role of inward rectifier potassium channels (Kir) and Na+ /K+ -ATPases was evaluated as was the contribution from gap junctions. Mathematical models estimating diffusion of ions and electrical coupling in myoendothelial gap junctions were used to interpret the results. Lack of connexin40 significantly reduces renal endothelial hyperpolarization. Inhibition of SK and IK channels significantly attenuated renal EDH to a similar degree in wild-type and knockout mice. Inhibition of Kir and Na+ /K+ -ATPases affected the response in wild-type and knockout mice but at different levels of stimulation. The model confirms that activation of endothelial SK and IK channels generates a hyperpolarizing current that enters the vascular smooth muscle cells. Also, extracellular potassium increases sufficiently to activate Kir and Na+ /K+ -ATPases. Renal endothelial hyperpolarization is mainly initiated by activation of IK and SK channels. The model shows that hyperpolarization can spread through myoendothelial gap junctions but enough potassium is released to activate Kir and Na+ /K+ -ATPases. Reduced coupling seems to shift the signalling pathway towards release of potassium. However, an alternative pathway also exists and needs to be investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.