Abstract
Cross-over study. The squat, single-leg squat, forward lunge, and reverse lunge are fundamental movements often performed in activities of daily living, sports competitions, and sport-specific training. The purpose of this study was to investigate the effect of visual feedback with a laser sensor (VFLS) versus a control condition on the myoelectric activity (surface electromyography [sEMG]) of the vastus medialis oblique (VMO), vastus lateralis, gluteus medius (Gmed), and erector spinae muscles during the performance of several squat variations with bodyweight. Nineteen female college students (20 [2.5]y, 165.3 [10.2]cm, 66.4 [4.1]kg, 2 [1.2]y of resistance training experience) with a background in strength or sports training volunteered to participate in this study. Over 4 separate visits, subjects performed 2 sets of 10 repetitions of a squat variation exercise in random order (ie,squat, single-leg squat, forward lunge, and reverse lunge). The first set of a given squat variation condition was considered a control set, and then after 3-minute rest, a second set was performed with VFLS. Significant decreases in VMO and Gmed myoelectric activity were observed during the VFLS set versus the control set for the forward lunge exercise (P = .03). No differences were observed between the control set and VFLS set in the sEMG normalized signal for all muscles analyzed for the squat and single-leg squat, respectively. However, the sample entropy of the sEMG signal for the erector spinae became more irregular during the VFLS set versus the control set for the squat exercise (P = .01), whereas the Gmed presented a more irregular sEMG signal during the VFLS set versus the control set for the single-leg squat (P = .08). Laser sensor biofeedback may induce significant decreases in VMO and Gmed activation performing forward lunge exercise. Therefore, laser sensor biofeedback may induce a reduction in muscle activity of neutralizers muscles during a few squat bodyweight variations (bilateral, single-leg, forward, and reverse lunge).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.