Abstract

This paper proposes a new learning set-up in the field of control systems for multifunctional hand prostheses. Two male subjects with a traumatic one-hand amputation performed simultaneous symmetric movements with the healthy and the phantom hand. A data glove on the healthy hand was used as a reference to train the system to perform natural movements. Instead of a physical prosthesis with limited degrees of freedom, a virtual (computer-animated) hand was used as the target tool. Both subjects successfully performed seven different motoric actions with the fingers and wrist. To reduce the training time for the system, a tree-structured, self-organizing, artificial neural network was designed. The training time never exceeded 30 seconds for any of the configurations used, which is three to four times faster than most currently used artificial neural network (ANN) architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call