Abstract

Muscle cell recruitment (hyperplasia) during myogenesis in the vertebrate embryo is known to occur in three consecutive phases. In teleost fish (including zebrafish), however, information on myogenic precursor cell activation is largely fragmentary, and comprehensive characterization of the myogenic phases has only been fully undertaken in a single slow-growing cyprinid species by examination of MEF2D expression. Here, we use molecular techniques to provide a comprehensive characterization of MyoD and Myogenin expression during myogenic cell activation in embryos and larvae of brown trout, a fast-growing salmonid with exceptionally large embryos. Results confirm the three-phase pattern, but also demonstrate that the second and third phases begin simultaneously and progress vigorously, which is different from the previously described consecutive activation of these phases. Furthermore, we suggest that Pax7 is expressed in myogenic progenitor cells that account for second- and third-phase myogenesis. These findings are discussed in relation to teleost myotome development and to teleost growth strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call