Abstract

AimsMultiple mitochondrial dysfunction (MMD) can lead to complex damage of mitochondrial structure and function, which then lead to the serious damage of various metabolic pathways including cerebral abnormalities. However, the effects of MMD on heart, a highly mitochondria-dependent tissue, are still unclear. In this study, we use iron-sulfur cluster assembly 1 (Isca1), which has been shown to cause MMD syndromes type 5 (MMDS5), to verify the above scientific question. Main methodsWe generated myocardium-specific Isca1 knockout rat (Isca1flox/flox/α-MHC-Cre) using CRISPR-Cas9 technology. Echocardiography, magnetic resonance imaging (MRI), histopathological examinations and molecular markers detection demonstrated phenotypic characteristics of our model. Immunoprecipitation, immunofluorescence co-location, mitochondrial activity, ATP generation and iron ions detection were used to verify the molecular mechanism. Key findingsThis study was the first to verify the effects of Isca1 deficiency on cardiac development in vivo, that is cardiomyocytes suffer from mitochondria damage and iron metabolism disorder, which leads to myocardial oncosis and eventually heart failure and body death in rat. Furthermore, forward and reverse validation experiments demonstrated that six-transmembrane epithelial antigen of prostate 3 (STEAP3), a new interacting molecule for ISCA1, plays an important role in iron metabolism and energy generation impairment induced by ISCA1 deficiency. SignificanceThis result provides theoretical basis for understanding of MMDS pathogenesis, especially on heart development and the pathological process of heart diseases, and finally provides new clues for searching clinical therapeutic targets of MMDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call