Abstract
The association of transcriptional coactivators with DNA-binding proteins provides an efficient mechanism to expand and modulate genetic information encoded within the genome. Myocardin-related transcription factors (MRTFs), including myocardin, MRTF-A/MKL1/MAL, and MRTF-B/MKL2, comprise a family of related transcriptional coactivators that physically associate with the MADS box transcription factor, serum response factor, and synergistically activate transcription. MRTFs transduce cytoskeletal signals to the nucleus, activating a subset of serum response factor–dependent genes promoting myogenic differentiation and cytoskeletal organization. MRTFs are multifunctional proteins that share evolutionarily conserved domains required for actin-binding, homo- and heterodimerization, high-order chromatin organization, and transcriptional activation. Mice harboring loss-of-function mutations in myocardin, MRTF-A, and MRTF-B, respectively, display distinct phenotypes, including cell autonomous defects in vascular ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.