Abstract
This experimental work has been carried out with the aim of studying the ultrastructural myocardial changes caused by prolonged anoxic cardiac arrest during cardiopulmonary bypass, and their prevention by means of two different techniques of coronary perfusion--systemic-pressure continuous and low-pressure intermittent perfusion. After 30 minutes of cardiac anoxia, the ultrastructural changes of the myocardial cell were reverted to normal by coronary perfusion; when anoxic cardiac arrest was prolonged up to 60 minutes there was severe myocardial damage, with marked mitochondrial changes and dehiscence of intercalated discs, which persisted in spite of restoring coronary flow. These morphological data were in accordance with the fact that no dog which underwent anoxic cardiac arrest for 60 minutes recovered. Both intermittent and continuous coronary perfusion were effective in preventing anoxic damage; cardiac muscle cells were better preserved by low-pressure intermittent perfusion than by systemic-pressure continuous perfusion, which caused intracellular and intramitochondrial oedema.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.