Abstract

Alteration in myocardial tissue, such as myocardial fibrosis, edema, inflammation, or accumulation with amyloid, lipids, or iron, has an important role in the cardiac remodeling that leads to diastolic and/or systolic dysfunction and the development of chronic heart failure, increasing the risk of adverse cardiovascular events. Thus, the early detection of changes at myocardial tissue level has great diagnostic and prognostic potential. The gold standard technique to assess these myocardial alterations is endomyocardial biopsy. However, this has been limited to a few patients due to the invasive nature, sampling errors, and its inability to assess the entire myocardium. Cardiovascular magnetic resonance (CMR) has emerged as the gold standard imaging not only for assessing cardiac volume, function quantification, and viability but also for noninvasive myocardial tissue characterization over the past decade. Its ability to characterize myocardial tissue composition is unique among noninvasive imaging modalities in cardiovascular disease. Currently, multi-parametric myocardial characterization with T1, T2, and extracellular volume has the potential to identify and track diffuse pathology in various diseases. In this review article, we present the role of established and emerging CMR techniques in myocardial tissue characterization, with an emphasis on T1 and T2 mapping, in clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call