Abstract

BackgroundChronic alcohol consumption initially leads to asymptomatic left ventricular dysfunction, but can result in myocardial impairment and heart failure if ongoing. This study sought to characterize myocardial tissues and oxidative metabolism in asymptomatic subjects with chronic alcohol consumption by quantitative cardiovascular magnetic resonance (CMR) and 11C-acetate positron emission tomography (PET)/computed tomography (CT).MethodsThirty-four male subjects (48.8 ± 9.1 years) with alcohol consumption > 28 g/day for > 10 years and 35 age-matched healthy male subjects (49.5 ± 9.7 years) underwent CMR and 11C-acetate PET/CT. Native and post T1 values and extracellular volume (ECV) from CMR and Kmono and K1 from PET imaging were measured. Quantitative measurements by CMR and PET imaging were compared between subjects with moderate to heavy alcohol consumption and healthy controls, and their correlations were also analyzed.ResultsCompared to healthy controls, subjects with alcohol consumption showed significantly shorter native T1 (1133 ± 65 ms vs. 1186 ± 31 ms, p < 0.001) and post T1 (477 ± 42 ms vs. 501 ± 38 ms, p = 0.008) values, greater ECV (28.2 ± 2.2% vs. 26.9 ± 1.3%, p = 0.003), marginally lower Kmono (57.6 ± 12.1 min− 1 × 10− 3 vs. 63.0 ± 11.7 min− 1 × 10− 3, p = 0.055), and similar K1 (0.82 ± 0.13 min− 1 vs. 0.83 ± 0.15 min− 1, p = 0.548) after adjusting for confounding factors. There were no significant differences in CMR measurements and K1 between subjects with heavy and moderate alcohol consumption (all p > 0.05). In contrast, subjects with heavy alcohol consumption showed significantly lower Kmono values compared to those with moderate alcohol consumption (52.9 ± 12.1 min− 1 × 10− 3 vs. 63.7 ± 9.2 min− 1 × 10− 3, p = 0.012). Strong and moderate correlations were found between K1 and ECV in healthy controls (r = 0.689, p = 0.013) and subjects with moderate alcohol consumption (r = 0.518, p = 0.048), respectively.ConclusionAsymptomatic men with heavy alcohol consumption have detectable structural and metabolic changes in myocardium on CMR and 11C-acetate PET/CT. Compared with quantitative CMR, 11C-acetate PET/CT imaging may be more sensitive for detecting differences in myocardial damage among subjects with moderate to heavy alcohol consumption.

Highlights

  • Alcohol consumption is the third leading lifestyle-related cause of death for people in the US, behind tobacco and improper diet/lack of physical activity, and is responsible for 3.8% of all deaths globally [1,2,3]

  • Strong and moderate correlations were found between K1 and extracellular volume (ECV) in healthy controls (r = 0.689, p = 0.013) and subjects with moderate alcohol consumption (r = 0.518, p = 0.048), respectively

  • Compared with quantitative cardiovascular magnetic resonance (CMR), 11C-acetate positron emission tomography (PET)/computed tomography (CT) imaging may be more sensitive for detecting differences in myocardial damage among subjects with moderate to heavy alcohol consumption

Read more

Summary

Introduction

Alcohol consumption is the third leading lifestyle-related cause of death for people in the US, behind tobacco and improper diet/lack of physical activity, and is responsible for 3.8% of all deaths globally [1,2,3]. The 4-year mortality rate for alcohol-induced dilated cardiomyopathy approaches 50% [5]. Alcohol consumption leads to asymptomatic left ventricular (LV) dysfunction, and can result in symptoms of heart failure if continues. Early assessment of the changes in structure and metabolism of myocardial tissues in subjects with alcoholism at asymptomatic stage is important for prevention of irreversible outcomes, such as dilated cardiomyopathy and heart failure. Chronic alcohol consumption initially leads to asymptomatic left ventricular dysfunction, but can result in myocardial impairment and heart failure if ongoing. This study sought to characterize myocardial tissues and oxidative metabolism in asymptomatic subjects with chronic alcohol consumption by quantitative cardiovascular magnetic resonance (CMR) and 11C-acetate positron emission tomography (PET)/computed tomography (CT)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.