Abstract

AimsTo determine how native myocardial T1 and extracellular volume (ECV) change with age, both to understand aging and to inform on normal reference ranges.Methods and resultsNinety-four healthy volunteers with no a history or symptoms of cardiovascular disease or diabetes underwent cardiovascular magnetic resonance at 1.5 T. Mid-ventricular short axis native and post-contrast T1 maps by Shortened MOdified Look-Locker Inversion-recovery (ShMOLLI), MOdified Look-Locker Inversion Recovery (MOLLI) [pre-contrast: 5s(3s)3s, post-contrast: 4s(1s)3s(1s)2s] and saturation recovery single-shot acquisition (SASHA) were acquired and ECV by these three techniques were derived for the mid anteroseptum. Mean age was 50 ± 14 years (range 20–76), male 52%, with no age difference between genders (males 51 ± 14 years; females 49 ± 15 years, P = 0.55). Quoting respectively ShMOLLI, MOLLI, SASHA throughout, mean myocardial T1 was 957 ± 30 ms, 1025 ± 38 ms, 1144 ± 45 ms (P < 0.0001) and ECV 28.4 ± 3.0% [95% confidence interval (CI) 27.8–29.0], 27.3 ± 2.7 (95% CI 26.8–27.9), 24.1 ± 2.9% (95% CI 23.5–24.7) (P < 0.0001), with all values higher in females for all techniques (T1 +18 ms, +35 ms, +51 ms; ECV +2.7%, +2.6%, +3.4%). Native myocardial T1 reduced slightly with age (R2 = 0.042, P = 0.048; R2 = 0.131, P < 0.0001—on average by 8–11 ms/decade—but not for SASHA (R2 = 0.033 and P = 0.083). ECV did not change with age (R2 = 0.003, P = 0.582; R2 = 0.002, P = 0.689; R2 = 0.003, P = 0.615). Heart rate decreased slightly with age (R2 = 0.075, coefficient = −0.273, P = 0.008), but there was no relationship between age and other blood T1 influences (haematocrit, iron, high density lipoprotein-cholesterol).ConclusionGender influences native T1 and ECV with women having a higher native T1 and ECV. Native T1 measured by MOLLI and ShMOLLI was slightly lower with increasing age but not with SASHA and ECV was independent of age for all techniques.

Highlights

  • Measurement of native T1 and extracellular volume (ECV) by cardiovascular magnetic resonance (CMR) allow quantification of diffuse myocardial fibrosis

  • Quoting respectively Shortened Modified Look-Locker Inversion recovery (ShMOLLI), MOdified Look-Locker Inversion Recovery (MOLLI), SASHA throughout, mean myocardial T1 was 957 ± 30 ms, 1025 ± 38 ms, 1144 ± 45 ms (P < 0.0001) and ECV 28.4 ± 3.0% [95% confidence interval (CI) 27.8

  • Native T1 measured by MOLLI and ShMOLLI was slightly lower with increasing age but not with SASHA and ECV was independent of age for all techniques

Read more

Summary

Introduction

Measurement of native T1 and extracellular volume (ECV) by cardiovascular magnetic resonance (CMR) allow quantification of diffuse myocardial fibrosis. The evidence is conflicting as to whether myocardial fibrosis increases with age with some studies suggesting it decreses[1] and others pointing to different age related processes, e.g. myocardial lipofuschin or haemosiderin accumulation.[2,3,4] Whether.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call