Abstract
Coronary collateral arteries (CCA) reduce cardiovascular events. We tested the hypothesis that new microvessels that proliferate in early atherosclerosis may be associated with myocardial protection during acute subtotal coronary artery obstruction (CAO). Acute left anterior descending CAO was induced by a balloon catheter in pigs after 12 weeks of high-cholesterol (HC) diet, renovascular hypertension (HTN), or normal control. Cardiac structure, myocardial perfusion, and functional response to iv adenosine and CAO were studied in vivo using electron beam computed tomography (CT). The intra-myocardial microvessels were subsequently evaluated ex vivo using micro-CT, and myocardial expression of growth factors using immunoblotting. Basal myocardial perfusion and microvascular permeability were similar among the groups, whereas their responses to adenosine were attenuated in HC and HTN. A significant decline in myocardial perfusion in normal pigs during acute CAO was attenuated in HC and abolished in HTN. CAO also elicited an increase in normal anterior wall microvascular permeability (+202 +/- 59%, P < 0.05), which was attenuated in HC and HTN (+55 +/- 9 and +31 +/- 8%, respectively, P < 0.05 vs. normal). Microvascular (<200 microm) spatial density was significantly elevated in HC and HTN, accompanied by increased myocardial growth factor expression. This study demonstrates that early exposure to the cardiovascular risk factors HC and HTN protects the heart from decreases in myocardial perfusion during acute subtotal CAO. This protective effect is associated with and potentially mediated by pre-emptive development of intra-myocardial microvessels that might serve as recruitable CCA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.