Abstract

The decrease in myocardial lipoprotein lipase (LPL) activity observed previously in acute, severe models of insulin-deficient diabetes may be a compensatory response to hypertriglyceridemia and a sustained increase in fatty acid delivery to cardiomyocytes. The administration of fructose (10% solution in the drinking water for 4 days) to rats produced hypertriglyceridemia, but heparin-releasable LPL activity from perfused hearts and total and heparin-releasable LPL activities in isolated cardiomyocytes were not reduced. The acute (4 day) induction of a mild diabetic state (60 mg/kg streptozotocin) resulted in modest hypertriglyceridemia, and a selective decrease in heparin-releasable LPL activity in perfused hearts; LPL activity in cardiomyocytes from diabetic rat hearts was not reduced. Therefore, the diabetes-induced fall in myocardial LPL activity is not secondary to hypertriglyceridemia, since fructose treatment did not change LPL activity. Perfusion of rat hearts with 100 microM lysophosphatidylcholine (LPC) released a small amount of LPL activity into the perfusate, but only if albumin was omitted from the perfusion solution. Thus, the selective reduction in heparin-releasable LPL activity in perfused diabetic hearts is probably not the consequence of displacement by LPC, a lipolytic product of the LPL-catalyzed degradation of triacylglycerol-rich lipoproteins. Circulating LPL activity in the plasma of diabetic rats was not decreased relative to control plasma enzyme activity; therefore, the reduction in heparin-releasable LPL activity is not because circulating LPL was less available for uptake by the endothelium in diabetic hearts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call