Abstract

During and after an ischemic injury, maintenance and recovery of cardiac function may critically depend on remote nonischemic myocardium. Graded myocardial ischemia is associated with an approximately 50% increase in stiffness of nonischemic myocardium. We determined whether this increase in stiffness is unique to the ischemic period or persists during reperfusion. Ten anesthetized (isoflurane 1.0% vol/vol) open-chest dogs were instrumented to measure left ventricular pressure and dimensions (sonomicrometry) in ischemic and nonischemic myocardium. Regional chamber stiffness and myocardial stiffness were assessed using the end-diastolic pressure-length relationship which was modified by stepwise infusion and withdrawal of 200 mL of the animals' own blood during baseline, 45 min low flow ischemia (systolic bulge), and 60 min after the onset of reperfusion. In remote nonischemic myocardium, regional myocardial ischemia was associated with a significant (P < 0.05) increase in chamber stiffness (+44%) and myocardial stiffness (+48%). Sixty minutes after the onset of reperfusion, chamber stiffness (+54%, P < 0.05 versus baseline) and myocardial stiffness (+55%, P < 0.05 versus baseline) remained increased. Thus, the ischemia-induced increase in stiffness of remote nonischemic myocardium persists for at least 60 min after reperfusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call