Abstract

AimsThe aim of this study was to elucidate myocardial interstitial serotonin (5-HT) kinetics in the heart, including 5-HT reuptake and enzymatic degradation to 5-hydroxyindole acetic acid (5-HIAA) via monoamine oxidase (MAO). Main methodsUsing microdialysis technique in anesthetized rats, we simultaneously monitored myocardial interstitial levels of 5-HT and its major metabolite, 5-HIAA, in the left ventricle and examined the effects of local administration of a MAO inhibitor, pargyline, or a 5-HT uptake inhibitor, fluoxetine. Key findingsPargyline increased dialysate 5-HT concentration from 1.8±0.3 at baseline to 3.9±0.5nM but decreased dialysate 5-HIAA concentration from 20.7±1.0 at baseline to 15.8±1.4nM at 60–80min of administration. Fluoxetine increased dialysate 5-HT concentration from 1.9±0.4 at baseline to 6.5±0.9nM at 60–80min of administration, but did not change dialysate 5-HIAA concentration. Local administration of ADP (100mM) increased dialysate 5-HT and 5-HIAA concentrations. Pargyline did not affect ADP-induced increase in dialysate 5-HT concentration but suppressed ADP-induced increase in dialysate 5-HIAA concentration during 60min of ADP administration. Fluoxetine increased dialysate 5-HT concentration at 40–60min of ADP administration, but did not affect ADP-induced increase in dialysate 5-HIAA concentration. SignificanceSimultaneous monitoring of myocardial interstitial 5-HT and 5-HIAA levels provides valuable information on 5-HT kinetics including reuptake and enzymatic degradation by MAO, which play a role in the regulation of myocardial interstitial 5-HT levels at baseline and when 5-HT levels are elevated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.