Abstract

Seventeen patients underwent magnetic resonance (MR) imaging for myocardial viability with a protocol approved by the institutional review board and gave written informed consent. Breath-hold cine inversion-recovery segmented k-space true fast imaging with steady-state precession sequence, referred to as inversion time (TI) mapping, was performed to determine optimal TI for myocardial infarction inversion-recovery imaging. From TI mapping, optimal TI was 180-315 msec 10-15 minutes after administration of 0.15 mmol/kg of gadolinium-based contrast material. At that optimal TI, relative signal intensity of infarcted myocardium compared with uninfarcted myocardium was maximal (mean +/- standard deviation, 297.8% +/- 86.5), whereas signal-to-noise ratio of uninfarcted myocardium was minimal (4.5 +/- 1.2). When applied to conventional myocardial infarction inversion-recovery imaging, optimal TI resulted in nulling of signal intensity of uninfarcted myocardium in all patients and in excellent conspicuity of infarcted myocardium in all nine patients with visible infarction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.