Abstract

Objective. Myocardial infarction (MI) is one of the most threatening cardiovascular diseases. This paper aims to explore a method for using an algorithm to autonomously classify MI based on the electrocardiogram (ECG). Approach. A detection method of MI that fuses continuous T-wave area (C_TWA) feature and ECG deep features is proposed. This method consists of three main parts: (1) The onset of MI is often accompanied by changes in the shape of the T-wave in the ECG, thus the area of the T-wave displayed on different heartbeats will be quite different. The adaptive sliding window method is used to detect the start and end of the T-wave, and calculate the C_TWA on the same ECG record. Additionally, the coefficient of variation of C_TWA is defined as the C_TWA feature of the ECG. (2) The multi lead fusion convolutional neural network was implemented to extract the deep features of the ECG. (3) The C_TWA feature and deep features of the ECG were fused by soft attention, and then inputted into the multi-layer perceptron to obtain the detection result. Main results. According to the inter-patient paradigm, the proposed method reached a 97.67% accuracy, 96.59% precision, and 98.96% recall on the PTB dataset, as well as reached 93.15% accuracy, 93.20% precision, and 95.14% recall on the clinical dataset. Significance. This method accurately extracts the feature of the C_TWA, and combines the deep features of the signal, thereby improving the detection accuracy and achieving favorable results on clinical datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call