Abstract

Myocardial infarction (MI) is considered as one of the major life-threatening health issues worldwide. Growing number of cases every year is demanding rapid, portable, and early detection by the sensing devices for the identification of MI. This research work introduces a modified interdigitated electrode (IDE) sensing surface constructed with single-walled carbon nanotube (SWCN) to detect the cardiac biomarker, C-reactive protein (CRP). CRP-specific aptamer was conjugated with gold nanoparticle and attached on SWCN-constructed IDE surface. This probe-modified sensing surface has reached the limit of CRP detection to 10pM on a linear regression curve with the regression coefficient of R²=0.9223 [y=0.9198x-0.4326]. Further, control molecules, such as random aptamer sequence and nontarget cardiac biomarker (Troponin I), did not show the current response, indicating the specific CRP detection. This sensing strategy helps to detect the lower level of CRP and diagnose the MI at its earlier stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.