Abstract

The effects of adenosine and the nonmetabolizable adenosine analogue N6-(L-2-phenylisopropyl)adenosine (PIA) on glucose transport or metabolism were determined in purified myocardial sarcolemmal vesicles, isolated cardiocytes, and perfused hearts. Adenosine (100 microM) did not affect hexose transport in myocytes. Also, adenosine deaminase, added to metabolize adenosine to inosine, did not alter transport of hexose into myocytes regardless of whether or not insulin was present. In contrast, PIA effectively inhibited 3-O-methyl-D-glucose uptake in myocytes even during insulin stimulation. PIA inhibited D-glucose-specific transport in both rat and bovine cardiac sarcolemmal vesicles (Ki = 26 microM at [D-glucose] = 5 mM). However, insulin did not affect glucose transport in sarcolemmal vesicles, which implies that receptor-coupled processes probably are not intact in this preparation. Thus, inhibition of PIA may not be receptor mediated. Also, PIA inhibited binding of cytochalasin B to bovine cardiac sarcolemmal vesicles, which supports the idea that PIA inhibits glucose flux by binding to the glucose transporter. To determine if adenosine altered glucose metabolism rather than transport, we measured the rate of 3H2O production from metabolism of D-[2-3H]glucose in paced rat hearts ([D-glucose] = 5.5 mM, [pyruvate] = 0.2 mM) perfused with a range of PIA or adenosine concentrations with or without 0.01 microM insulin. Adenosine (0.01-100 microM) in the presence or absence of insulin increased coronary flow but did not change glycolytic rates. Similar results were obtained with PIA (no insulin) rather than adenosine in the perfusate. However, with glucose as the only exogenous substrate, 100 microM PIA inhibited glycolysis by approximately 50%.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.