Abstract

Myocardial fiber architecture is a physiologically important regulator of ejection fraction, strain and pressure development. Apparent ultrasonic backscatter has been shown to be a useful method for recreating the myocardial fiber architecture in human-sized sheep hearts because of the dependence of its amplitude on the relative orientation of a myofiber to the angle of ultrasonic insonification. Thus, the anisotropy of the backscatter signal is linked to and provides information about the fiber orientation. In this study, we sought to determine whether apparent backscatter could be used to measure myofiber orientation in rodent hearts. Fixed adult-rat hearts were imaged intact, and both a transmural cylindrical core and transmural wedge of the left ventricular free wall were imaged. Cylindrical core samples confirmed that backscatter anisotropy could be measured in rat hearts. Ultrasound and histologic analysis of transmural myocardial wedge samples confirmed that the apparent backscatter could be reproducibly mapped to fiber orientation (angle of the fiber relative to the direction of insonification). These data provided a quantitative relationship between the apparent backscatter and fiber angle that was applied to whole-heart images. Myocardial fiber architecture was successfully measured in rat hearts. Quantifying myocardial fiber architecture, using apparent backscatter, provides a number of advantages, including its scalable use from rodents to man, its rapid low-cost acquisition and minimal contraindications. The method outlined in this study provides a method for investigators to begin detailed assessments of how the myocardial fiber architecture changes in preclinical disease models, which can be immediately translated into the clinic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call