Abstract

Myocardial extracellular volume fraction (ECV) assessment can be affected by various technical and subject-related factors. To evaluate the role of contour-based registration in quantification of ECV and investigate normal segment-based myocardial ECV values at 3T. Pre- and post-contrast T1 mapping images of the left ventricular basal, mid-cavity, and apical slices were obtained in 26 healthy volunteers. ECV maps were generated using motion correction with and without contour-based registration. The image quality of all ECV maps was evaluated by a 4-point scale. Slices were dichotomized according to the occurrence of misregistration in the source data. Contour-registered ECVs and standard ECVs were compared within each subgroup using analysis of variance for repeated measurements and generalized linear mixed models. In all three slices, higher quality of ECV maps were found using contour-registered method than using standard method. Standard ECVs were statistically different from contour-registered ECVs in global (26.8% ± 2.8% vs. 25.8% ± 2.4%; P = 0.001), mid-cavity (25.4% ± 3.1% vs. 24.3% ± 2.5%; P = 0.016), and apical slices (28.7% ± 4.1% vs. 27.2% ± 3.4%; P = 0.010). In the misregistration subgroups, contour-registered ECVs were lower with smaller SDs (basal: 25.2% ± 1.8% vs. 26.7% ± 2.6%; P = 0.038; mid-cavity: 24.4% ± 2.3% vs. 26.8% ± 3.1%; P = 0.012; apical: 27.5% ± 3.6% vs. 29.7% ± 4.5%; P = 0.016). Apical (27.2% ± 3.4%) and basal-septal ECVs (25.6% ± 2.6%) were statistically higher than mid-cavity ECV (24.3% ± 2.5%; both P < 0.001). Contour-based registration can optimize image quality and improve the precision of ECV quantification in cases demonstrating ventricular misregistration among source images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call