Abstract
Early detection of cardiovascular diseases has been a very active research area in the medical imaging field. Assessment of the local and global mechanical functions is one of the major goals of accurate diagnosis. In this study, we investigated the feasibility of elastography for estimation and imaging of the local cardiac muscle displacement and strain in a human heart in vivo. In its noninvasive applications, elastography has been typically used to determine local tissue strain through the use of externally applied compression. For our study, we utilized the cardiac muscle motion during a cardiac cycle as the mechanical stimulus, and acquired successive radiofrequency (RF) data frames of the septal and posterior walls over a few cardiac cycles in parasternal and apical views, respectively. High-quality ciné-loop elastograms were obtained due to high frame rates and the resulting low decorrelation noise. Furthermore, the strain contrast was higher in the parasternal case, when only the posterior wall was imaged, and strain estimation was more robust in the apical view. High repeatability of the results was observed through elastographic measurements over several cardiac cycles. Finally, an M-mode version of elastography was used to follow part of the interventricular septum or the posterior wall over the course of two cardiac cycles. Not only do these preliminary results show that elastography is feasible in cardiac applications in vivo, but also that it can provide new information regarding cardiac motion and mechanical function. Future prospects include assessment of the role of elastography in detection of ischemia and infarction. (E-mail: elisak@bwh.harvard.edu)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.