Abstract

Cardiac endothelium releases a number of factors that may modulate performance of underlying cardiac muscle. Nitric oxide (NO), which accounts for the biological activity of the vascular endothelium-derived relaxing factor and relaxes vascular smooth muscle by elevating intracellular cGMP, may be involved in this cardiac modulation. We examined the myocardial contractile effects of the NO-releasing nitrovasodilators sodium nitroprusside (SNP), 3-morpholino-sydnonimine (SIN-1), and S-nitroso-N-acetyl-penicillamine (SNAP); of a cGMP analogue, 8-bromo-cGMP; and of the cGMP-phosphodiesterase inhibitor zaprinast in isolated cat papillary muscle. Modulation of these effects by endocardial endothelium (EE) and by cholinergic and adrenergic stimulation was also investigated. Concentration-response curves with addition of NO-releasing nitrovasodilators (SNP, SIN-1, SNAP) and 8-bromo-cGMP resulted in a biphasic inotropic response. Although administration of low concentrations induced a positive inotropic effect, higher concentrations induced a negative inotropic effect. Both NO-induced positive and negative inotropic effects were attenuated by methylene blue, suggesting a role for cGMP. The response to high concentrations of 8-bromo-cGMP was shifted to the right in muscles with damaged EE, whereas cholinergic stimulation shifted the curve leftward. Zaprinast caused a monophasic concentration-dependent positive inotropic effect; damaging the EE shifted the terminal portion of the curve upward. Concomitant cholinergic or adrenergic stimulation modified the response to zaprinast into a negative inotropic response. NO and cGMP induced a concentration-dependent biphasic contractile response. The myocardial contractile effects of NO and cGMP were modulated by the status of EE and by concomitant cholinergic or adrenergic stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.