Abstract

Myocardial calcium signaling in physiology and disease Soojeong Kang,1 Djamel Lebeche1,21Cardiovascular Research Institute, 2Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USAAbstract: It is now well-established that calcium (Ca2+) is a critical regulator of myocardial function and that abnormalities in cardiomyocyte intracellular Ca2+ dynamics contribute to pathophysiologic changes observed in several cardiac diseases, including cardiac hypertrophy, chronic heart failure, and ventricular tachyarrhythmias. Although Ca2+ plays a key role in maintaining cardiac excitation–contraction coupling, it is increasingly apparent that changes in myocardial Ca2+ also contribute to the regulation of normal and pathological signal transduction that controls myocyte growth, hypertrophic signaling, mitochondrial energetics, and transcriptional gene expression. Interestingly, experimental evidence suggests that these multifarious Ca2+-dependent responses are spatially and temporally mediated by distinct cellular Ca2+ pools (ie, microdomains), which are generated by diverse channels and molecular signals with widely differing timescales of activation. These concepts are discussed in this review, as well as the emerging role of microRNAs in cardiac remodeling and myocardial Ca2+ dynamics.Keywords: calcium signaling, calcium microdomains, hypertrophy, heart failure, arrhythmia, microRNAs

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.