Abstract

Mechanisms underlying cardiac contractile dysfunction during and after rewarming from hypothermia remain largely unknown. We have previously reported myocardial post-hypothermic calcium overload to be the culprit. The aim of the present study was to measure changes in myocardial [Ca(2+) ](i) during graded hypothermia and after rewarming in an anesthetized, intact rat model, using the (45) Ca(2+) technique. Rats were randomized and cooled to 15 °C. Hearts were excised and perfusion-washed to remove extracellular calcium after 0.5 h of hypothermia (n = 9), 4 h of hypothermia (n = 8), and after 4 h of hypothermia and 2 h rewarming (n = 9). A normothermic group, kept at 37 °C for 5 h, served as control (n = 6). [Ca(2+) ](i) was determined in perchloric acid extracts of heart tissue. Spontaneous cardiac electromechanic work was maintained during hypothermia without cardiac arrest or ischaemia. Between 0.5 and 4 h at 15 °C, a six-fold increase in cardiac [Ca(2+) ](i) was observed (0.55 ± 0.10 vs. 2.93 ± 0.76 μmol (g dry wt)(-1) ). Rewarming resulted in a 33% decline in [Ca(2+) ](i) , but the actual value was significantly above the value measured in control hearts. We show that calcium overload is a characteristic feature of the beating heart during deep hypothermia, which aggravates by increasing duration of exposure. The relatively low decline in [Ca(2+) ](i) during the rewarming period indicates difficulties in recovering calcium homoeostasis, which in turn may explain cardiac contractile dysfunction observed after rewarming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call