Abstract
This study aimed to investigate the effects of co-treatment of aerobic-resistance training (ART), vitamin D3 (VD3) on cardiovascular function considering the involvement of microRNA-15a and microRNA-146a, vascular endothelial growth factor (VEGF), phosphatidylinositol-3 kinase (PI3K), and endothelial nitric oxide synthase (eNOS) after myocardial infarction (MI) in rats. To induce MI, male Wistar rats subcutaneously received isoproterenol for 2 days, then MI was confirmed by echocardiography. MI rats were divided into six groups (n = 8/group). MI + VD3, MI + sesame oil (Veh), MI + ART, MI + VD3 + ART, and MI + Veh + ART, and received the related treatments for 8 weeks. Exercise tests, echocardiography, real-time quantitative polymerase chain reaction (qRT-PCR), western blotting, and histological staining were performed after the end of treatments. The highest ejection fraction (EF%), fractional shortening (FS%), exercise capacity (EC), and maximal load test (MLT) amounts were observed in the groups treated with VD3, ART, and VD3 + ART (P < 0.05). These were accompanied by a significantly increased angiogenesis post-MI. Furthermore, the levels of circulating microRNA-15a and microRNA-146a were significantly decreased in these groups compared to MI rats that were together with a significant upregulation of cardiac VEGF, PI3K, and eNOS expression. Overall, the best results were observed in the group treated with VD3 + ART. Concurrent VD3 supplementation and ART attenuated microRNA-15a and microRNA-146a and induced angiogenesis via VEGF/PI3K/eNOS axis. This data demonstrate that concurrent VD3 supplementation and ART is a more efficient strategy than monotherapy to improve cardiac function post-MI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.