Abstract

BackgroundColorectal cancer (CRC) has a high worldwide incidence and mortality. Tumor metastasis is one of the primary reasons for the poor prognosis of CRC patients. However, the mechanism underlying CRC metastasis is still unclear. Myosin 1B (MYO1B) is important for cell migration and motility and is part of the myosin superfamily that contains various myosins. Studies of prostate, cervical, and head and neck cancer have revealed preliminary findings concerning the effect of MYO1B on tumor metastasis. However, the role of MYO1B in CRC metastasis, as well as its underlying mechanism, remains unknown.MethodsQuantitative real-time PCR and immunohistochemical staining methods were used to analyze the expression of MYO1B in human CRC and normal mucosa tissues. Lentivirus vector-based MYO1B oligonucleotides and short hairpin RNA (shRNA) were used to examine the functional relevance of MYO1B in CRC cells. Co-immunoprecipitation, western blotting, and immunofluorescence assays were used to investigate the underlying mechanism of MYO1B-mediated cell migration.ResultsThe expression of MYO1B was increased in most CRC tissues and was positively associated with a greater risk of tumor metastasis and poor prognosis for patients. MYO1B was significantly associated with the migration and invasion properties of CRC cells in vitro and in vivo. MYO1B promoted F-actin rearrangement through the ROCK2/LIMK/Cofilin axis by enhancing the activation of RhoA. MYO1B also promoted the assembly of focal adhesions by targeting RhoA.ConclusionsMYO1B plays a vital role in CRC metastasis by promoting the activation of RhoA. MYO1B may not only be a valid biomarker for predicting the risk of metastasis and poor prognosis in CRC but may also be a potential therapeutic target for patients with a high risk of tumor metastasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call