Abstract

Pulmonary hypertension (PH) results from pulmonary vasculopathy, initially leading to a compensatory right ventricular (RV) hypertrophy, and eventually to RV failure. Hypoxia can trigger both pulmonary vasculopathy and RV failure. Therefore, we tested if myo-inositol trispyrophosphate (ITPP), which facilitates oxygen dissociation from haemoglobin, can relieve pulmonary vasculopathy and RV hypoxia, and eventually prevent RV failure and mortality in the rat model of monocrotaline-induced PH. Rats were injected with monocrotaline (PH) or saline (control) and received ITPP or placebo for 5 weeks. Serial echocardiograms were obtained to monitor the disease, pressure-volume loops were recorded and evaluated, myocardial pO2 was measured using a fluorescent probe, and histological and molecular analyses were conducted at the conclusion of the experiment. ITPP reduced PH-related mortality. It had no effect on progressive increase in pulmonary vascular resistance, yet significantly relieved intramyocardial RV hypoxia, which was associated with improvement of RV function and reduction of RV wall stress. ITPP also tended to prevent increased hypoxia inducible factor-1α expression in RV cardiac myocytes but did not affect RV capillary density. Our study suggests that strategies aimed at increasing oxygen delivery to hypoxic RV in PH could potentially be used as adjuncts to other therapies that target pulmonary vessels, thus increasing the ability of the RV to withstand increased afterload and reducing mortality. ITPP may be one such potential therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.