Abstract

The discovery of the second-messenger functions of inositol 1,4,5-trisphosphate and diacylglycerol, the products of hormone-stimulated inositol phospholipid hydrolysis, marked a turning point in studies of hormone function. This review focuses on the myo-inositol moiety which is involved in an increasingly complex network of metabolic interconversions, myo-Inositol metabolites identified in eukaryotic cells include at least six glycerophospholipid isomers and some 25 distinct inositol phosphates which differ in the number and distribution of phosphate groups around the inositol ring. This apparent complexity can be simplified by assigning groups of myo-inositol metabolites to distinct functional compartments. For example, the phosphatidylinositol 4-kinase pathway functions to generate inositol phospholipids that are substrates for hormone-sensitive forms of inositol-phospholipid phospholipase C, whilst the newly discovered phosphatidylinositol 3-kinase pathway generates lipids that are resistant to such enzymes and may function directly as novel mitogenic signals. Inositol phosphate metabolism functions to terminate the second-messenger activity of inositol 1,4,5-trisphosphate, to recycle the latter's myo-inositol moiety and, perhaps, to generate additional signal molecules such as inositol 1,3,4,5-tetrakisphosphate, inositol pentakisphosphate and inositol hexakisphosphate. In addition to providing a more complete picture of the pathways of myo-inositol metabolism, recent studies have made rapid progress in understanding the molecular basis underlying hormonal stimulation of inositol-phospholipid-specific phospholipase C and inositol 1,4,5-trisphosphate-mediated Ca2+ mobilisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.