Abstract

Hypertrophic cardiomyopathy (HCM) is a monogenic cardiac disorder commonly induced by sarcomere gene mutations. However, the mechanism for HCM is not well defined. Here, we generated transgenic MYH7 R453C and MYH6 R453C piglets and found both developed typical cardiac hypertrophy. Unexpectedly, we found serious fibrosis and cardiomyocyte loss in the ventricular of MYH7 R453C, not MYH6 R453C piglets, similar to HCM patients. Then, RNA-seq analysis and western blotting identified the activation of ERK1/2 and PI3K-Akt pathways in MYH7 R453C. Moreover, we observed an increased expression of fetal genes and an excess of reactive oxygen species (ROS) in MYH7 R453C piglet models, which was produced by Nox4 and subsequently induced inflammatory response. Additionally, the phosphorylation levels of Smad2/3, ERK1/2 and NF-kB p65 proteins were elevated in cardiomyocytes with the MYH7 R453C mutation. Furthermore, epigallocatechin gallate, a natural bioactive compound, could be used as a drug to reduce cell death by adjusting significant downregulation of the protein expression of Bax and upregulated Bcl-2 levels in the H9C2 models with MYH7 R453C mutation. In conclusion, our study illustrated that TGF-β/Smad2/3, ERK1/2 and Nox4/ROS pathways have synergistic effects on cardiac remodelling and inflammation in MYH7 R453C mutation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.