Abstract

AbstractMyeloproliferative neoplasms (MPNs) are a heterogeneous group of chronic hematological diseases that arise from the clonal expansion of abnormal hematopoietic stem cells, of which polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) have been extensively reviewed in the context of control of clonal expansion, fibrosis, and other phenotypes. Herein, we review current knowledge on the influence of different forms of MPN on bone health. In studies, murine models and human data have implicated various degrees of effect of different forms of MPN on bone density and on osteoblast proliferation and differentiation. Most results have shown that bone volume is generally increased in patients with PMF, whereas it is slightly decreased or not altered in patients with ET or PV, although possible differences between male and female phenotypes were not fully explored in most MPN forms. Osteosclerosis in patients with PMF is a serious complication that can lead to bone marrow failure, and the loss of bone reported in some patients with ET or PV can lead to osteoporotic fractures. Some MPN forms are associated with an increased number of megakaryocytes (MKs), and several of the MK-associated factors in MPN are known to affect bone development. We review known mechanisms involved in these processes, with a focus on the role of MKs and secreted factors. Understanding MPN-associated changes in bone health could improve early intervention and treatment of this side effect of the pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call