Abstract

Broad prospects for the use of single-walled carbon nanotubes (SWNTs) in medicine and biotechnology raise the concerns about both their toxicity, and the mechanisms of biodegradation and excretion from the body. SWNTs biodegradation as a result of catalytic activity of myeloperoxidase (MPO) was shown in the isolated MPO system as well as in the suspension of neutrophils [Kagan V.E., et al., 2010]. In the present study we analyzed the ability of different MPO-produced oxidants to participate in the modification and degradation of SWNTs. The comparison of the ability of various peroxidases to degrade SWNTs in vitro revealed that myeloperoxidase, due to its ability to produce hypochlorite, and lactoperoxidase, due to its ability to produce hypobromite, are extremely efficient in the degradation of carbon nanotubes. The biodegradation of SWNTs in the model system can also be caused by free radicals generated as a result of heme degradation and, to a lesser extent, by active oxoferryl intermediates of peroxidases. Our experiments showed that in the presence of blood plasma, peroxidase intermediates or free radical products of heme degradation were unable to initiate biodegradation of carbon nanotubes, only the generation of hypochlorite by MPO can cause the biodegradation of carbon nanotubes in vivo. Titration of SWNTs suspension containing plasma with hypochlorite at high concentrations resulted in the decrease in the optical absorbance of the suspension indicating the degradation of nanotubes. Our results clearly indicate that hypochlorite can serve as a main oxidizing agent which is able to modify and degrade nanotubes in the sites of inflammation and in the phagosomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.