Abstract
BackgroundIt is demonstrated that levels of protein-bound chlorotyrosine, nitrotyrosine and myeloperoxidase (MPO), a protein that catalyzes generation of chlorinating and nitrating oxidants, serve as independent predictors of cardiovascular disease. MethodsImmunoprecipitation and Western blot were used to analyze protein concentration, nitration and chlorination. LC-MS/MS was used to identify nitrated and chlorinated sites of Tyr from immunoprecipitated serum proteins. ResultsApolipoprotein A-I (apoA-I), the primary protein constituent of high density lipoprotein (HDL), was identified as a selective target for MPO-catalyzed nitration and chlorination in patients with type 2 diabetes. The serum proteins from diabetic subjects showed that the levels of apoA-I nitration and chlorination were clearly increased, whereas apoA-I concentration and cholesterol efflux activity were significantly decreased. MPO as a likely mechanism for oxidative modification of apoA-I in vivo was apparently facilitated by MPO binding to apoA-I. Subsequently, it was found that Tyr 192 was the major nitration and chlorination site in apoA-I from diabetic serum. Further studies in vitro revealed that besides the classic inhibition in cholesterol efflux activities, MPO-catalyzed oxidation could result in a loss of anti-apoptotic activity of lipoprotein. ConclusionsApoA-I undergoes MPO-mediated oxidation in serum from diabetic patients compared to non-diabetic subjects and MPO-catalyzed modification may impair the anti-apoptotic properties of HDL in vitro.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.