Abstract

Chronic inflammation, typical of various diseases including cancer, is a "silent bomb within the body," leading to complications that are only evident in most cases upon their appearance, when disease is already deteriorated. Chronic inflammation is associated with accumulation of myeloid-derived suppressor cells (MDSCs), which lead to immunosuppression. MDSCs have numerous harmful effects as they support tumor initiation, tumor growth and spreading, which in turn, perpetuate the inflammatory and suppressive conditions, thus preventing anticancer responses. As the concept of the immune system combating many types of tumors was revived in recent years, immunotherapy has dramatically changed the view of cancer treatment, and numerous novel therapies have been developed and approved by the FDA. However, cumulative clinical data point at very limited success rates. It is most likely that the developing chronic inflammation and MDSC-induced immunosuppression interfere with responses to such treatments and hence are major obstacles in achieving higher response rates to immune-based therapies. Moreover, chemotherapies were shown to have adverse immunoregulatory effects, enhancing or decreasing MDSC levels and activity, thus affecting treatment success. Therefore, therapeutic manipulations of chronic inflammation and MDSCs during cancer development are likely to enhance efficacy of immune- and chemo-based treatments, switching chronic pro-cancer inflammatory environments to an anticancerous milieu. Based on the functional relevance of immune networking in tumors, it is critical to merge monitoring immune system biomarkers into the traditional patient's categorization and treatment regimens. This will provide new tools for clinical practice, allowing appropriate management of cancer patients toward a better-personalized medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.