Abstract

The presence of tumor infiltrating lymphocytes (TILs) is associated with a longer overall survival in advanced stage epithelial ovarian cancer. Despite the prognostic impact of TILs, response to checkpoint-inhibitors and antigen-specific active immunotherapy is limited in ovarian cancer. The goal of our study was to investigate the interaction between ovarian cancer and the innate and adaptive immune system in the ID8-fLuc syngeneic ovarian cancer mouse model. For the in vivo experiments C57BL/6, B6.129S7-Rag1tm1Mom/J, and B6.129P2(SJL)-Myd88tm1.1Defr/J mice were inoculated with ID8-fLuc. In vivo depletion experiments were performed using clodronate liposomes (CL), anti-CD8a, anti-GR1, anti-colony stimulating factor 1 (anti-CSF1), and TMβ1 (anti-CD122). Immune read out was performed by fluorescent activated cell sorting analysis for effector T cells, regulatory T cells, natural killer cells, B cells, macrophages, and myeloid derived suppressor cells (MDSC), immunohistochemistry for MDSC and tumor-associated macrophages (TAM) and immunofluorescence for M1 and M2 TAM in the vascular context. The effect of MDSC on T cell proliferation and phenotype were studied in vitro. We discovered that the absence of T and B cells did not influence tumor growth or survival of B6.129S7-Rag1tm1Mom/J mice compared to immunocompetent C57BL/6 mice. CL-induced macrophage depletion promoted tumor proliferation and shortened survival in C57BL/6 mice (p = 0.004) and in B6.129S7-Rag1tm1Mom/J mice (p = 0.0005). During CL treatment, we observed a clear increase of pro-inflammatory cytokines (p ≤ 0.02) and monocytic MDSC (p ≤ 0.01). Selective depletion of MDSC by anti-GR1 improved survival, certainly in comparison to mice treated with anti-CSF1 (p = 0.01—median survival 91 vs. 67.5 days). B6.129P2(SJL)-Myd88tm1.1Defr/J mice displayed to a longer median survival compared to C57BL/6 mice (90 vs. 76 days). MDSC activated by ID8-fLuc conditioned medium or ascites of tumor-bearing mice showed T cell suppressive functions in vitro. Based on these findings, we conclude that the adaptive immune system does not efficiently control tumor growth in the ID8-fLuc model. In addition, we discovered a prominent role for MDSC as the driver of immunosuppression in the ID8-fLuc ovarian cancer mouse model.

Highlights

  • Ovarian cancer is the 5th leading cause of cancer death for women in developed countries [1]

  • To investigate the specific role of CD8+ T cells in immune surveillance in the ID8-fLuc ovarian cancer model, we performed a depletion experiment by which we inoculated C57BL/6 mice with ID8-fLuc and started treating the mice with anti-CD8 20 days after tumor inoculation [20] In this experiment, we did not observe a difference in tumor burden 6 weeks after inoculation between anti-CD8 treated and control mice, which corresponds to the results obtained with B6.129S7-Rag1tm1Mom/J mice (Figures 1C,D)

  • In this paper we studied the interaction between ovarian cancer and the immune system in the ID8-fLuc ovarian cancer mouse model

Read more

Summary

Introduction

Ovarian cancer is the 5th leading cause of cancer death for women in developed countries [1]. The immunoreactive subtype, which characterized by increased expression of CXCL11, CXCL10, and CXCR3, and displays the most favorable overall survival (OS) compared to the other subgroups [5] In line with this evidence, Zhang et al demonstrated that the presence of tumor infiltrating lymphocytes (TILs) significantly correlates with improved survival in advanced epithelial ovarian cancer [6]. In 2015, the Ovarian Cancer Action meeting suggested to study the interaction between ovarian cancer and the immune system, in order to develop strategies aimed at potentiating the anti-tumor immune response [7] Despite these efforts, only a limited number of ovarian cancer patients have responded to checkpoint-inhibitor therapy [8,9,10]. No significant survival benefit was observed in ovarian cancer patients receiving antigen-specific active immunotherapy to date, most likely due to an overwhelming immunosuppression [11, 12]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call