Abstract
One of the several impediments to effective oncolytic virus therapy of cancer remains a lack of tumor-specific targeting. Myeloid-derived suppressor cells (MDSC) are immature myeloid cells induced by tumor factors in tumor-bearing hosts. The biodistribution kinetics of MDSC and other immune cell types in a murine hepatic colon cancer model was investigated through the use of tracking markers and MRI. MDSCs were superior to other immune cell types in preferential migration to tumors in comparison with other tissues. On the basis of this observation, we engineered a strain of vesicular stomatitis virus (VSV), an oncolytic rhabdovirus that bound MDSCs and used them as a delivery vehicle. Improving VSV-binding efficiency to MDSCs extended the long-term survival of mice bearing metastatic colon tumors compared with systemic administration of wild-type VSV alone. Survival was further extended by multiple injections of the engineered virus without significant toxicity. Notably, direct tumor killing was accentuated by promoting MDSC differentiation towards the classically activated M1-like phenotype. Our results offer a preclinical proof-of-concept for using MDSCs to facilitate and enhance the tumor-killing activity of tumor-targeted oncolytic therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.